
.
A VERY HIGH LEVEL LANGUAGE FOR LARGE-GRAINED DATA FLOW*

, '/',&' 2-
Hilda M. Standley
Assistant Professor

/ I B

Dep of Computer Science and Engineering
"he University of Toledo

T o l c W 3 6 Q 6 - - _/' -. .
y q t e - m b e r 5,1986

2--.---.___ _-

A data flow language above the level of a traditional high level language is presented for the purpose of

adapting programs written in a conventional programming language to a parallel e n h m e n t A program
b

written in EASY-FLOW is a set of subprogram calls as units, structllfed by iteration, branching, and

distribution constructs. The sequencing of execution within these structures is dictated by the data

dependencies between units.

INTRODUCTION

Recognition of the increases in computation s p e d offered by a multiplicity of processing elements,

accompanied by the steady decline of the cost of a single processing element, has prompted the design of

many multiprocessor architecturrs. The problems of synchronization and communication bekeen multiple

processing elements have been addressed satisfactorily to the point that several commercial multiprocessor

systems arc available at the advertised level of the "minisupercomputer" and "personal supercomputer"

19,121. The maja problems that remain relate u) programming the multiprocesscps efficiently PI. A

solution to the parallel software problem must pmvide for (1) the determination of potential parallelism in

programs, (2) partitioning the programs, and (3) scheduling the program partitions to execute in a

This work is supported by NASA Lewis Research Center under grant # NAG 3-699.

. .

DATA FLOW APPROACH TO PROGRAMMING

The data flow schema of program execution offers a simple solution to the software problem [21. The

data flow model of a computation consists of a graph in which nodes represent operations and directed

edges represent data dependency relationships. Tokens representing data values travel on the edges, each

between the node from which it was output and the node to which it is input. A node is enabled for

execution when a token has arrived on each of its input edges. Performing the operation consists of

consuming the input token on each input edge and producing output tokens, one on each of the outgoing

edges, as a result of the computation. The computations associated with the nodes axe assumed to be low-

level, binary operations. ,
.

The sequence of node executions is derermined solely by data availability. No program counter is

required. Nodes that are not connected by paths in the graph may execute overlapping in time.

Concurrency is determined by default, i.e. by the lack of data dependencies between any two nodes. All

potential concurrency, down to the operation level, is exposed. Due to the functional relationship between

a result produced by an operation and the comsponding operands,the data flow model may be considered

to belong to the class of funcuon~ pmgramming models [IO], with all of the attendant advantages.
I- -

u .+ --

4-
The data flow model of corn, ‘e- hers assistance in meeting all three software requirements for

multiprocessor machines. The maximum amount of potential parallelism is expressed in the data flow

graph, the program partitioning problem becomes a graph partitioning problem. and the flow of data

provides the automatic scheduling of operations.

Despite the attractiveness of the data flow approach to parallel programming, the implementation on

many contemporary multiprocessor architectures poses a major problem. Ironically, it is due to an

acknowledged major asset of data flow--the vast amount of parallelism exposed. The large number of

potentially parallel operations can cause a large amount of ovehead due to the communicating of

operands/mults between processing elements. Researchers encountering this problem have resorted to the

partitioning and compaction of portions of a data flow graph into sequentially executable modules to be run

on one processing element [6,13]. The complexity of the task of determining optimal or near optimal

partitionings has been documented (141. This topdown, then bottom up, two step procedure-determining

2

the data dependencies at the operation level and then combining operations into sequential modules--

represents a large expenditure of effort. This can be alleviated by the large-grained data flow approach [4]

in which the data dependencies are determined at the subprogram level instead of at the operation level.

DATA FLOW PROGRAMMING

The two major approaches to the determination of data dependencies are to use existing, sequential

languages, or to develop a new language for the expression of data dependencies. The former approach

requires a parallelizing compiler to automatically detect the data dependencies between operations. The

obvious advantages are that the rerrainiqiof conventional language programmers would be unnecessary

and the magnitudes of existing sequential software would still be usable. Much research effort has been

expended in this direction with some encouraging results, but many conventional language constructs defy

accurate analysis for data dependency information [71.

A parallel language may be designed to include explicit parallel constructs so that the programmer is

conscious of the parallelism being expressed, for example: vector operations. In contrast, a new language

may provide for the implicit expression of parallelism, by the absence of data dependencies. Data flow

languages such as VAL [l 11, ID PI, and LUCID[lS] use this approach.

A VERY HIGH-LEVEL DATA FLOW LANGUAGE

The object of this report, the very high-level data flow programming language, EASY-FLOW, is the

result of applying a composite of these approaches to the development of parallel software. The goals of

the language design project are: (1) to develop a language that would require very little retraining of

conventional language programmen, (2) to provide for the continued use of the magniarde of software in

existence with only minor modifications, and (3) to expose potential parallelism both implicitly and

explicitly, at the large-grained level or below (referred to as "variable resolution [8]").

Using EASY-FLOW, a program is specified as a hierarchy of units. Each unit may be made up of a

s u b s a u c m of units, a reference to an extanal unit, or be atomic. An atomic unit is a call to a

subprogram, procedurr, or function aprrssed in a conventional, high-level language. It is assumed that

.
the high-level language of the atomic units will be one of the more traditional high-level languages such as

FORTRAN, Pascal, C.

EASY-FLOW defines a unit by specifying subunits (if any) and the relations between them. The

relationships between units are determined from the data dependencies deduced from the lists of "input

values" and "output values" associated with each unit (the input and output lists associated with the highest

level unit, Le. the program unit, lndicate values used in inputloutput operations with the external

environment). The "single assignment rule[l]," important in determining true data dependencies, is

enforced with each name representing a unique value or data structure. As a consequence of this rule, no

name may appear in both the "input" lis; dnd the "output" list of any given unit or in more than one output

list, with the exception of the branching construct "Reassignment" is allowed only as part of the iteration

construct.

EASY-FLOW allows the specification of fimctionaYdata flow programming in a procedural context.

Three language constructs offer the minimal set nquired to p v i Q for the flow of control: sequence,

branch, loop [SI. They are the SUBPROGRAM call, the IF-THEN-USE, and the ITER (for iterate),

respectively. An additional construct, DISTRIBUTE, offers an explicit notation for parallelism The

calculation of values and the assignment of those values to variables may take place only in a

SUBPROGRAM call.

The single assignment rule is enforced, as previously stated, by not allowing the same name to appear in

both the input list and the output list of the same unit In addition to this, each call to a subprogram is

enclosed within an envelope (the INnrouTOF pair) that allows the passing of paramem while shielding

the variable in the unit from reassignment through rearming parameter values. Global variables are

prohibited since their values may be changed as the result of subprogram calls.

TAKING ADVANTAGE OF PARALLELISM

The unit, IF-THEN-ELSE, lTER. andDISTRIBUTE constructs provide a structure within which one or

more units may be placed. Multiple units appearing within a structure are termed a unit set A data flow

graph is constructed by the EkSY -FLOW language processor from the data dependencies determined from

4

I

the input and output lists of the units within a unit set. An edge between two units is established wherever

a data value name appears in the input list of one unit and the output list of the other. Implicit parallelism

may be found by examining the data flow graph. The nodes in the graph that are not connected by paths

may be scheduled to be executed overlapping in time.

The example EASY-FLOW program in Figure 1 calculates the maximum of the values of the two

functions, f and g at a point X. The program is named MAX - TWO and four names for data values are

declared having type real. The program consists of one unit, called MAIN, with one input value, X, and

one output value, RESULT'. The body of the MAIN unit is a unit set consisting of three units, each having

a call to a subprogram as its body, far caicnlating the functions f o , g(X), and max(f(X),g(X)). Since the

stated data dependencies between units detnmine the sequence of execution, these thne units may appear

in any order. The data flow graph reprrsenting this calculation is shown in Figure 2. Potential parallelism

is seen to exist between the calculations of f(X) and g o . A subprogram written in a conventional

4

language must be provided for each subprogram called from the EASY-FLOW program. In this example

h e subprograms are required: F, G, and MAX in order to calculate f(x), g(x), and max(f(x),g(x)),

respectively.

Figure 3 gives an EASY-FLOW program for performing the calculation of MAXTWO on several

values of X. The ITER statement provides for the looping and changing of the value of the index, I, over

the array X. As a way of introducing the IF-THEN-ELSE statement, a zero value is produced as the result

of an X value less than zero. Subprograms B1 and B2 must be provided in a conventional language to

return boolean values as the result of tests for I less than ar equal to 10 and XO greater than or equal to

0.0, respectively. The program in F i g w 4, W O P A R , performs the same calculation,

making use of the distribute wnsauct to explicitly state the parallelism in independently processing all

elements of the X array.

5

PROGRAMMING IN EASY-FLOW

EASY-FLOW may be used for writing new programs or for modifying existing programs for the

purpose of producing parallel software. The hierarchical nature of the language assists in topdown

program design. Each unit may have a substructure consisting of a unit set. At the lowest level,

subprograms written in a conventional programming language must be supplied. .These subprograms will

perform all programming opedons not included in EASY-FLDW and wil l typically include assignment

statements, arithmetic expressions, boolean expressions, and operations on data structures. Since data

dependencies between units an obstacl? to parallelism, designing separate units to operate on data

separately promotes pardelism
b

Existing programs may be modified in a top down fashion with the main program being rewritten in

EASY-FLXIW as a set of calls to the subprograms. Additional subprograms at levels below the main

program may be rewritten into EASY-FLOW with the degree to which this is done determining the 9

amounts of pardelism to be made available, Le. only the parts of the program written in EASY-FLOW

will offer parallelism; all other parts will zcmain to be executed sequentially. Thus, the amount of

parallelism exposed is Propamonal to rhe amount of effort expended in rewriting m EASY -FLOW.

The EASY-FLOW approach to large-grained data flow Programming differs from previous efforts [4]

primarily by the absence of the nquirement that the programmer adhere to a graph model. Programs are

specified in the standard textual fashion and, with the exception of the DISTRIBUTE construct, do not

indicate any explicit parallelism

THE EASY-FLOW LANGUAGE PROCESSING SYSTEM

The major task of a compiler for EASY-FLOW is to determine the data flow graph for each unit set

encountered in a program. The code produced by a compiler for EASY-FLOW is dependent upon the

parallel nature of the target machine. In the case of a uniprocessor, completely sequential code is produced

for the entire program. This may be done by performing a topological sort on the nodes in the data flow

graph to determine an appropriate, although not necessarily unique, unit execution sequence.

6

Y

In the case of a multiprocessor system. the data flow graphs generated offer a guide to the separation

and distribution of units. Once program units have been assigned to processing elements, execution may

begin with the communication of data values between units by whatever means available on the target

machine. One of the parallel architectures being examined in this project is the Intel iPSC* * Concurrent

Computer. Current operating system software supports individual high-level language programs on each

processing element, with communications b e e n programs taking place through message passing.

Program units assigned to individual processing elements arc augmented with statements to facilitate the

receipt of input data (operands) and to cause the results to be passed along as outgoing messages.
b

Additional software exists to check @e subprograms written in the conventional languages for potential

violations to the single assignment rule. Subprograms are processed by a "sanitizing" program to remove

references to global variables and to make note of name equivalencing statements (examples: COMMON

and EQUIVALENCE statements in FORTRAN, respectively).

CONCLUSIONS

A new data flow language, EASY-FLOW, has been presented with the main goal of easing the

transition from traditional high-level language programming to programming in languages that promote the

production of parallel software for contemporary multiprocessor computers. Although the concept is

(perhaps deceptively) attractive in its simplicity, it remains to be seen if it is genuinely easy for traditional

programmers to use and if sufficiently efficient implementations result.

Tbe intent of the language is to offer a simple structure for the determination of parallelism at a high-

level, Le. large-grained parallelism. However, due to its hierarchical nature, any level granularity may be

achieved, down to the operation level in one assignment statement It is not expected that a programmer

using EASY-FLOW will carry the granularity down to the point where a subprogram contains only one

assignment statement, but that capability exists. Programs specified in a relatively fine-grained fashion

may have selected units above the atomic level processed to produce sequential code when the architecture

of the target machine dictates that the granularity of the program is too fine to permit an efficient

** iPSC is a registered uademark of Intel CorpOration.

7

9

implementation. The automatic determination of optimal program granularity is a useful language

processing system extension and continues to be an open area of research.

ACKNOWLEDGEMENT

The following people are gratefully acknowledged for their impcatant contributions this project

Mary Lou Dorf and Shelly Hancock, both of The Univasicy of Toledo, and Jim Kiraly of the NASA Lewis

Research Center.

MAXTWO :
' b

declare : real X, FX,GX, RC~ULT

unit MAIN :
input: X

unit C U C F :
into: X => X
subprogram F (X, PX)
0utof:FX -> FX

endunit CALCF:

unit CALCG :
into: X -> X
subprogram G (X, GX)
outof:GX -> GX

endunit CALCG

unit FINDMAX :
into: FX => FX

GX => GX
subprogram MAX (FX, GX, RESULT)
outof:RESULT => RESULT

endunit FINDMAX

output : RESULT

endunit MAIN

Fig. 1 EASY-FLOW program to calculate the maximum
value of the two functions f and g at point x.

Fig. 2 A data flow graph for MAx?wO.

MANYMAXTWO :

declare: real X(10) ,FX,GX,RESULT(lO)
integer 1,J
boolean T1, T2

unit MAIN:
input: X
unit INITIALIZE:
into:
subprogram INIT (I 1
outof: I -> I

endunit INITIALIZE
unit LOOP :
input I, X
iter into: I => I

subprogram B1 (I ,TI
outof :T => T1 '

do
unit CHECK:
input: X,I
if into: X(I) => X

subprogram B2 (X, T)
outof:T -> T2

then
unit CALCF :
into: X(1) -> X
subprogram F (X, FX) I
0utof:FX -> FX

endunit CALCF
unit CALCG :
into: X(1) -> X
subprogram G (X, GX)
outof:GX => GX

endunit CALCG
unit FINDMAX:
into: FX => FX

GX -> GX
I -> I

subprogram MAX (FX, GX, I, RESULT)
outof :RESULT => RESULT

endunit FINDMAX

unit ZERO :
else

into: I => I
subprogram ZERO (1,RESULT)
outof :RESULT -> RESULT

endunit ZERO
output: RESULT

endunit CHECK

unit INCREMENT :
into: I => I
subprogram INCR(1)
outof :I => J

endunit INCREMENT
reassign

J => I
output: RESULT

endunit LOOP
output : RESULT

endunit MAIN

Fig. 3 EASY-FLOW program to calculate the maximum
value of the two functions f and g at 10
positive x points. The value of zero is
returned i f x is less than or equal to 0.

b

MANYMAXTWOPAR : #

declare: real X(10) ,FX,GX,RESULT(lO)
integer I,J
boolean T

unit MAIN :
input: X
distribute I = 1 .. 10

unit CHECK:
input: X,I

i f into: X (1)
subprogram
outof:T =>

then
unit CALCF :
into: X(I)
subprogram
0utof:FX => FX

endunit CALCF
unit CALCG :

into: X (1) => X
subprogram G (X, GX)
outof:GX => GX

endunit CALCG
unit FINDMAX:

into: FX => FX
GX => GX
I -> I

subprogram MAX (FX, GX, I, RESULT)
outof:RESULT => RESULT

enduni t F INDMAX

unit ZERO :
else

into: I => I
subprogram ZERO (I, RESULT)
outof:RESULT => RESULT

enduni t ZERO

10

output : RESULT
endun i t CHECK
ou tpu t : RESULT

endun i t MAIN

Fig. 4 Program M-0 with explicit parallelism.

Bibliography

[l) W. Ackerman, "Data Flow Languages," AFIPS Conf. hoc., Vol. 48,1979, pp. 1087-1095.

[2] T. Agenvala and Anrind, "Data Flow Systems-Guest Editors' Introduction," Computer Vol 15, No.
2, Feb. 1982, pp. 10-13.

[3] m i n d and K. Gostelow, "The U-Interprrter." Computer, Vol. 15, No. 2, Feb. 1982, pp. 4249.

[4] R. Babb II, "Parallel Processing with Large-Grain Data Flow Techniques," Computer, Vol. 17, No. 7,
July 1984, pp. 55-61.

[5l C. Bohm and G. Jacopini, "Flow Diagrams, turing Machines and Languages With Only Two
Formation Rules," CACM Vol. 9, No. 5, May 1966 pp. 366-371.

[61 M. Campbell, "Static Allocation for a Data Flow Multiprocessor," Proc. 1985 Int Conf. on Parallel
-Sing, pp. 511-517.

171 D. Gelernter, "Domesticating ParalleIism-Guest Editor's Introduction," Computer, VoL 19, No. 8, pp.
12-16.

[81 J. Gmdiot and M. Ercegovac, "Pafamance Analysis of a Data-Row Computer with Variable
Resolution Actors," Roc. 4th Int. Cod. Distributed Computer Systems, 1984, pp. 2-9.

[9] N. Hayes "New Systems Offer Near-Supercomputer Performance," Computer, Vol. 19. No. 3. Mar.
1986 pp. 104-107.

[101 P. Henderson, "Functional Programming--Application and Implementation," F'rentice-Hall
International, 1980.

[lll J. McGraw, "The VAL Language-Description and Analysis," Tech. Report UCRL-83251, Lawrence
Livemore Laboratory, Univasity of California, Livermore, CA 94550

[12] N. Mokhoff, "Hypercube Architecture Leads the Way for Commercial Supercomputers in Scientific
Applications," Computer Design, Vol. 25, No. 9, May 1, 1986, pp. 28-30.

[131 T. Ravi, "Partitioning and Allocation of Functional Programs far Data Flow Processors," Internal
Report UCLA Computer Science Dept, Univ. of Ce, Los Angeles, 1985.

[14] V. Sarkar and J. Hennessy, "Partitioning Parallel Programs for Macro-Dataflow," 1986 ACM
Conference on List and Functional Programming.

[IS] W. Wadge and E. Ashcroft, "Lucid, the Dataflow Programming Language," Academic Press. 1985.

1 1

